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I. Phys. condens. Matler 5 (1993) 161-170. hinted in the UK 

The breakdown of Fermi liquid theory in the Hubbard 
model: II 

D M Edwards 
Depanmenl of Mathematics, Imperial College, London SW7 2BZ, UK 

h i v e d  9 September 1992 

AbslraEt An exact diagrammalie analysis of the electron selfenergy in the Hubbard and 
related mod,els is giva within the local approximation. Contan is made with rwer.1 work 
for dimension d = to where the laal approximation bemmes cxaa It is shown that 
the approximate method of paper I of the series may be Etted into the new framework 
a d  yields sensible mults for the Anderson impurity d e l .  ?his lends weight to the 
predidion of I that for pamagnelic mlutiom of the Hubbard model Fermi liquid 
behaviour breaks d o m  in a whole region of the T = 0 phase diagram, no1 just for a 
half-filled band where the Moll wansition occurs 

1. Introduction 

In the first paper of this series [I], referred to here as I, a new approach to the 
Hubbard model [Z] vas introduced. The Hubbard alloy analogy approximation [2] 
was mcdilied so as to recover Fermi liquid behaviour for small U / W ,  where U is the 
on-site interaction between electrons and 2W is the bandwidth. It was found that, 
for lowelectron density, Fermi liquid behaviour, characterized by a normal Fermi 
surface marked by a Migdal discontinuity in the Blwh-state occupation number (nk), 
persisted for all U / W .  However, nearer half filling Fermi liquid behaviour was found 
to break down at larger U / W .  The calculation showed a phase transition at T = 0 
between a normal Fermi liquid and a non-Fermi liquid along a curve in the 6 versus 
U / W  phase diagram, where 6 = 1 - 2n and n is the number of electrons per 
atom per spin. The method used to obtain these rather striking results of I is exact 
in certain limits, within the local approximation discussed below, but of uncertain 
accuracy in between. In this paper we formulate a theory which is formally exact 
within the local approximation. It is shown that the approximate method of I f a h  
within the general framework of this theory which lends more weight to the results 
of I. It is now known [3,4] that the local approximation is exact for d = CO, where d 
is the number of spatial dimensions, and in this limit the present theory provides a 
new derivation of a recently derived calculational scheme which in principle is exact 
F-71. 

2. Exact diagrammatic formulation of the self-energy within the local approximation 

’RI be specific we shall consider the Hubbard mode1 [2] with Hamiltonian 

i 
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in the usual notation. We shall consider proper self-energy diagrams at T = 0 
although the generalization to k i t e  T is immediate. These diagrams have the same 
structure for any other model with electron interaction restricted to the on-site form of 
the second term in H. Only the unperturbed propagator Gj k Merent for different 
models. The one-electron term, the tint in H, may include hopping between orbitals 
associated with more than one band so that the class of Hamiltonians we may consider 
includes the periodic Anderson model and the d-p model of CuO, planes as well as 
the Anderson impurity model. 

We recall that the Hubbard alloy analogy approximation [2] consists in calculating 
the self-energy for electrons of spin U using the oneelectron Hamiltonian obtained 
by the replacement niOni-- -+ nim{ni-e) in equation (21). The take d u e s  
0 or 1 and a configuration average over the positions of the ‘frozen’ -U spin is carried 
out using the coherent potential approximation (CPA). This is the best single-site, or 
Iocal, approximation for the alloy self-energy and corresponds to an electron in a 
self-consistently determined effective medium scattering repeatedly from a given site 
[SI. It is exact for d = CO 191. In the local approximation the self-energy is diagonal 
in the site representation and is therefore a function of energy only. The Falicov- 
Kimball model [lo] in the homogeneous phase is mathematically equivalent to the 
Hubhard model with the alloy analogy approximation and the (;PA therefore yields 
exact solutions of the Rlicov-Kimball model for d = 00 [11,4. 

The main defect of the alloy analogy approximation is that it never yields a 
normal Fermi liquid with a Migdal discontinuity and quasi-particle states of infinite 
lifetime at the Fermi surface 1121. This is because electrons of spin D are scattering 
from disordered ‘frozen’ -U electrons; to obtain Fermi liquid behaviour it B essential 
to include the dynamics of the -D electrons [13,1]. We now give a diagrammatic 
treatment of the selfenergy which includes this dynamics and is exact within the local 
approximation. We use a site representation and follow as closely as possible the 
diagrammatic treatment of the alloy CPA [SI. Despite a formal similarity the meaning 
of the diagrams is different because there is no analogue of configurational averaging 
in the present many-body case. The diagrams for the proper self-energy C = Cii in 
the present local approximation are drawn in figure l(a).  The doubly-crosshatched 
parts of the diagrams are connected so that no diagram falls into two parts on 
cutting one of the double-line propagators and there are no self-energy insertions on 
any double line. The latter are included in the full propagator represented by the 
double tine. However, non-nested diagrams such as that of figure l(b) are included, 
which is a difference from the alloy CPA diagrams [SI. In fact figure l(a) presents 
a complete set of self-energy diagrams; the only approximation is the local one in 
which each interaction of the propagating dressed electron with the rest of the system 
takes place at the same site i. The crosshatched parts of the diagrams, even if 
drawn as skeleton diagrams with self-energy insertions absorbed into full propagators 
everywhere, include interactions at sites other than i in general. However, in the 
special case d = M interactions throughout a skeleton diagram may be restricted to 
site i [4]. In the following analysis we consider the selfenergy C as a functional 
of the local propagator G = Gii represented by the double line. Thus we write 
C = C [ q  and in general we shall consider C[yI where 7 is not restricted to be 
the true propagator G. However, all propagators in the rest of the diagram (the 
crosshatched region) are actual propagators appropriate to the model considered 
(e.g. Hubbard, Anderson impurity etc.). 

Our first objective is to show how to derive the Hubbard alloy analogy 
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I*) 0) 

%'@I= L (U) A complete SI of ploper selfenergy diagrams. All mteractions of the 
double-he propagator oxur at a single ate i in the 1-1 a p e a t i o n .  (b) A non- 
nested diagram &mi& ir acluded from the related alloy CPA diagrams [SI but is mcluded 
here. 

diagrammatically and it k then straightforward to obtain the desired dynamical 
generalization. l b  do this we regroup the diagrams of figure l(u) as shown m 
figure 2 The singiy-crosshatched parts of the diagram in column 1 correspond to 
full n-particle Green functions 

where T is the timeordering operator. The singly-crosshatched regions therefore 
contain contributions from disconnected paw which must be subtracted, as shown in 
mlumns 2,3, .  . .. Figure 2 is very s i d a r  to figure 11 of Elliott e! d [SI although the 
meaning of the diagrams is rather different The following analysis follows their work 
closely. 

(T[%-,(tl)ni-Atd. ' .~ i -AL) l )  (22) 

Fwrc 2 A regrouping of the diagrams of figure l(a) as explained in L e  text 

We denote the sum of column 1 in figure 2 by S[q ,  once again considering it as 
a functional of the double-line propagator. The sum of column 2 may be re-written 
as in figure 3 where the aiple-line propagator is given by 

Thus the sum of column 2 is -C[y] + C [ q ,  the sum of column 3 is -E[r]GC[y] 
and so on. Hence, adding the column, we have 

E14  = S I q +  ~ [ q - W / l - ~ h I G ~ [ ~ l . .  . = S [ q + C [ q  - U Y ] / ( ~ - ~ [ ~ I G ) .  

0.4) 

= G +  GC[r]G+ GC[r]GC[r]G+ ... = G/( l -  C[y]G). (2.3) 
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+ I  ..... 

*re 3 Another way of miting the sum of column 2 m Qure 2, mth Uiplc-line 
propagator defined by equation (23). 

Thus 

C[Yl = SIW(1+ S[W). (2.5) 

Also, from equation (2.3), 

G = Y/(I + Y W ~ )  (2.6) 

which may be substituted in equation (25) to obtain an equation defining the 
functional C[y]. Replacing y by G in this equation we find the required self-energy 
C = C [ q  satisfies the equation 

This is an equation for C since for a given model the local Green function G is a 
known function of 6. Thus for the Hubbard model 

G = N - ' C ( E  - Ck - E)-' = @ ( E  - C) 
k 

where ek is the one-electron band energy and @ ( E )  is the one-electron Green 
function for the non-interacting system. Corresponding expressions for the Anderson 
lattice, d-p model and Anderson impurity may be. written down immediately. For the 
Anderson impurity model the relationship between G and C is very simple and may 
be witten as 

G-' = (@)- I  - E (2.9) 
where @ is the unperturbed Green function for the local orbital. 

For equation (2.5) to be. useful we need a way of calculating the functional S[q .  
This is easy to do with the alloy analogy approximation. In this approximation the 
--d spin electrons are frozen, which corresponds to turning off -cr spin hopping. 
Then nibC( t )  is independent of time t and the Green function (2.2) is just {ni-,,). 
In the absence of -0 spin dynamics all the local propagators in column 1 of figure 2 
are ewluated at the same energy and we can sum the terms in column 1 to obtain 

S [ q  = U ( T L - ~ ) ( ~  - UG)-'. (2.10) 
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Thus in the alloy analogy approximation S [ q  k a funclion of G; it is also m.versu1, 
that is the same for all models. On substituting this form for S into equation (2.7) 
we easity obtain the standard "A equation IS] 

C = U(n- , ) / [ l -  (U - C ) q  (211) 

for the selfenergy of a o-spin electron. 
lb go beyond the alloy analogy, and obtain a more useful form of equation (2.7) 

which is exact within the local approximation, it k convenient to introduce a new 
functional S,[q. ?his k defined as the sum of columns 1,3,4,5.. . in figure 2, 
once again considered as a functional of the double-lime propagator. The diagrams of 
column 2 are not subtracted so that the diagrams defining S,[q take the form of the 
proper self-energy diagrams one would draw if the double h e  was a bare propagator, 
although all its interactions occur at site i. Thus SI[@] is the self-energy calculated 
with a restriction that the bare propagator at the base of each diagram has interactions 
at a single site i. Clearly 

S[cl = Si14 + S i I q G s i I q  +. . . = si[q/(l- GSi[q) .  (212) 

C=S,[G/(I+GC)].  (213) 

Using this relation in equation (27) we obtain 

This is the central result of this section and it requires some discussion. 
Equation (213) states that withiin the local approximation we may calculate 

the self-energy exactly according to the following prescription: sum all self-energy 
diagrams, drawn with bare propagators, but with the propagator @ along the base 
of the diagram having interactions only at a single site i and being replaced by 
G/(1+ GC). The latter replacement compensates for the restriction to scattering at 
a single site. For the impurity model there ir only one site and, from equation (2.9), 
G/(1 + GC) = d. Hence the prescription just tells us to sum all self-energy 
diagrams so that for the impurity model equation (213) is a tautology. It follows from 
equations (212) and (2.10) that in the alloy analogy approximation Sl[q becomes 

SY[q = U ( X J / P  - (1- (n-,)UGl (214) 

a universal function of G. In general the functional S,[q is model-dependent but 
in the case d = 00 it becomes universal, for the following reason. Maller-Hamnann 
[4] pointed out that, for the Hubbard model in d = CO, interactions in skeleton 
diagrams for C may be restricted to a single site. Hence C is a functional of the 
local Green function G and the functional is universal because the structure of the 
self-energy diagrams is identical for all models of the class considered. Clearly from 
equation (2.13), since C is a universal functional for G for d = CO, SI is a universal 
functional in this limit. Thus, for d = M, SI may be determined for the simplest 
model, the Anderson impurity model, and is thus defined by 

= S I  [ GU,,]. (215) 

Hence S, is the functional relating the unperturbed local Green function and the 
self-energy for the impurity model. Equation (212) is then a useful equation to 
determine C exactly for any of the other models with d = CO, provided one 
can calculate the self-energy for the impurity model with arbitrary unperturbed 
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propagator or, equivalently, arbitrary hybridization function A ( E ) .  This is the scheme 
recently proposed by several authors [5-71. Methods used so far to calculate E,, 
approximately include second-order perturbation theory [6] and Monte-Carlo methods 
[14-16]. Work in progress in our p u p  makes use of numerical renormalization group 
methods developed here by Costi and Hewson [17]. AU these methods are quite 
complicated numerically and so far do not yield clear-cut results on, for example, 
the transition between a Fermi liquid and non-Fermi liquid phase. The method of I 
yielded interesting results quite simply and the main p u r p e  of the next &on is to 
show that it can be fitted into the framework discussed m this section. This makes 
the striking results of I more plausible and in paper 111 of the series we shalr give 
further details of the calculations reported rather briefly in I. 

3. Earlier work from the new viewpoint 

3.1. Kawabata's approach 

We begin by showing how the early work of Kawabata [13] on the half-filled Hubbard 
band firs in to the general structure discussed in section 2 It turns out to be closely 
related to the second-order perturbation treatment of the d = 03 limit used by 
Georges and Kotliar [6] and Zhang a al [18]. In this limit the equation determining 
the self-energy C may be written, according to equations (213) and (215), in the 
form 

= C,,[GuI (3.1) 

G;' = G-'+ C. 9-2) 

Here the functional C,,[Gu] yields the selfenergy of an Anderson impurity model 
with unperturbed Green function G,. For the symmetric case of the Anderson model, 
corresponding to half filling in the Hubbard model, it is known that second-order 
perturbation theory is reasonable provided the expansion is made around the non- 
magnetic Hartree-Fock solution [19]; in particular it gives the correct atomic limit, 
with hybridization turned off, in the symmetric case. The unperturbed propagator is 
then the Hartree-Fock propagator given by 

, G$=G;'-Un 0.3) 

where n = (L-) is the number of electrons per atom of one spin. The suflix U 

is unecessary since we consider only paramagnetic states in this paper. The semnd- 
order contribution E, to C,,[G,], corresponding to the simplest bubble diagram, is 
given by 

C, = UZG,(t)ZG,(-t) (3.4) 

C, = iUzG,(t)x(t) 0.5) 

or 

where ~ ( t )  = -iG,(t)Gm(-t) is the non-interacting localdensity response for 
electrons of one spin. Thus in the second-order treatment [6,18] the self-energy is 
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given by C = U n  + C, where C, satisfies equation (3.4) with the Fourier transform 
of G,(t) replaced by a propagator whose inverse is 

G-l+ E,. 0.6) 
The last equation foUm from equations (3.3) and (3.2). Kawabata [D] determined 
C, by using equation (3.5) and making the same replacement (3.6) for G ,  but 
introducing a phenomenological form for ~ ( t )  corresponding to a full interaaing 
response function. This procedure was motivated by comparison with the Hubbard 
alloy analogy. It is interesting that Bang et ul [lS] find a metalinsulator transition 
for the half-filled Hubbard band whereas Kawabata 1131 finds a metallic state for 
all finite U. Tb understand this difference we note that in an insulating state the 
Wrmi l ed  lies in the gap so that the imaginary paw of G and C, vanish at the 
Rrmi energy. The imaginary part of the propagator replacing %. whose inverse is 
expression @a), vanishes similarly and thus has a gap in ils spectrum. In the strict 
second-order treatment of Zhang et af [18] the density response x in (3.5) corresponds 
to a simple bubble of such propagators and hence corresponds to a non-interacting 
density fluctuation spectrum with a frequency gap. In Kawabata's treatment x is a 
W1 density response €or electrons of one spin; it is dominated by spin fluctuations at 
low frequency and quite generally Im x Q w in both metallic and insulating states. 
It appears to be this which inhibits an insulating self-consistent solution based on 
equation (3.5). Clearly equation (3.5) is an unsatisfactory form for E,, beyond the 
strict second-order treatment of equation (3.4). and a vertex correction would have 
to be introduced as &ne previously for the ferromagnetic Hubbard model 1201 and 
high-field limit of the Anderson lattice [21]. Both equations (3.4) and (3.5) are 
unsatisfactory away from haIf filling of the band because they do not give the correct 
atomic limit 

3.2. The method @paper I 
We first recall the method of ppe r  I and then show how it may be regarded as 
adopting a type of functional S, in equation (2.13) which can give reasonable results 
for the test case of the Anderson impurity model. 

In the Hubbard alloy analogy CPA approximation the semnd-order contribution 
to the self energy C( E )  of the Hubbard model is 

U2n(l- n)cP(E) (3.7) 
where @ is the Green function for the non-interacting system and n the number of 
electrons of each spin, as before. The correct secondader contribution in the local 
approximation may be written in the same form with @ ( E )  replaced by @(E), the 
Fourier transform of 

@(t)  = iGo( t )Xu( t ) / [n ( l -n ) ]  (3.8) 
where xu( t )  is the non-interacting local density response for electrons of a given spin. 
It is convenient to use the corresponding retarded Green functions in the spectral 
representations 

d (E)= /p (w) (E-w) - ' dw (3.9) 

@(E) =/fi(w)(E-w)-'dw (3.10) 
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where p ( w )  is the one-electron density of states for the non-interacting Hubbard 
band. ,Z(w) is a functional of p ( w )  for given n and has the following important 
properties: 

(i) i f p ( w )  is non-zero in the interval (-W, W), ,?(U) is non-zero in (-3W,3W); 
(ii) the weight of p(w)  below and above Ep,  the Fermi level in the band, is a 

and 1 - a, respectively, as for p(w);  and 
(iii) p(w) N (w - &)2 near Ep.  
The last property yields, to secondader, Im C( E) D: Im @ ( E )  cs (E - Ep)' 

which ensures Fermi liquid behaviour. This is, of course, not the case for the Hubbard 
approximation (3.7). 

We have pointed out that the correct secondader C in the local approximation 
may be obtained from the Hubbard alloy analogy result by replacing @ in (3.7) 
by a new unperturbed propagator @. 'he approximate procedure of I is to make 
this replacement to all orders so that the CPA equation (211) for C ( E ) ,  in which 
G = @(E - C) from equation (28), becomes 

c = Vn[l-(U-C)@(E-C)]- ' .  0.11) 

In the calculations of I we used the semi-elliptic band 

P ( E )  = ( 2 / X V 1 -  (E /W 2 1 117 (3.12) 

and approximated the corresponding p(  E) by a reasonable and convenient analytic 
expression having the three properties described above. We shall discuss the half-filled 
band case ( EF = 0)  in detail where we took 

(3.13) 

usually assuming b = 0. The parameter c is a scale factor (rr 2-3) which allows for 
property (i) of ,Z and the E' factor ensures property (E). The parameters a, b and 
c are related by the normalization condition J p(E)  d E  = 1. 

Equations (3.13), (3.10) and (3.11) define the scheme used in I to calculate 
the self-energy C of a Hubbard model with unperturbed density of states p (  E). 
Equation (3.11) may be regarded as derived from the general equation (212) with 
the following definition of the functional SI: 

(3.14) 

where, for G = @(E - E), G = @(E - E) and Sp is defined by equation (2.14). 
Clearly S,(g), as defined, is not a universal functional of g. Its evaluation involves 
first writing g in the form g = G / ( l +  GC), where C is the self-energy (to be 
determined) of the particular model, and then replacing G by G in a prescribed 
manner. It was pointed out in section 2 that in general the exact functional S, is not 
universal. 

Clearly the above dehition of SI, leading to equation (3.11) for C as used in I, is 
somewhat arbitrary. Its main justification is a correct atomic limit and a qualitatively 
correct small-U limit. We now apply it to the t a t  case of the symmetric Anderson 
impurity model and show that it can give certain essential results correctly. For the 
standard impurity model p( E) is the Larentzian function 

p ( E )  =?r-'A/(E'+A*). (3.15) 

P ( E )  = (E/c) 'p(E/c)/b2 + b ' ( E / ~ ) ~ l  

S,[G/(1+ GC)] = Sp[G/ (1+  GC)] 
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Hence, from equations (3.13) and (3.13, 

5(E)  = ( l / c ~ ) [ A / ( ~ 2 + A 2 ) ] [ ( 1 - P ) ~ 2 / ( P z A z +  (l-p)’~’)] (3.16) 

with I = E / c  The parameters a and b in equation (3.13) have been replaced 
by a single parameter p, defined by (1 - p ) / p  = b A / a ,  so that $(E)  is correctly 
normalized. The corresponding Green function given by equation (3.10) is 

e ( E )  = [ ( l - p ) / c ] [ ( ~ ’ ( ~ + ~ ) - ~ - ~ ~ ) / ( ~ ~ A ~ t  (1-p)2zz)]. (3.17) 

Equations (3.11) and (3.17) define C and an expansion of equation (3.11) around 
the R r m i  level, given by p = U / 2  in the symmetric case considered, yields the 
renormalization factor 

z =  (1-dC/dE)& = i-(uZ/4c)[(l-p)/P] (3.18) 

where U = U / A .  For the impurity model considered here z should be positive for 
all U, ensuring Fermi liquid behaviour, and its value determines the width of the 
Kondo monance in the one-elecaon spectrum at the Fermi level. For correct Kondo 
behaviour z - e x p ( - ~ U / 8 A )  for U 2 A and this can be simulated by the following 
choice of the principal parameter appearing in our functional: 

b A / a  = ( I -p) /p= (4c/u2)[1-exp(-?ru/8)]. (3.19) 

This choice ensures the correct width of the Kondo resonance for all U; its height 
is correctly given by the height (*A)-’ of the resonance in the non-interacting case 
U =Osince G= @ ( E - C ) ,  and E =  C = U/2at the Fermi level E =.U, so that 
Im G(p)  = Im @(O). Furthermore the &rrectness of the atomic limit ensures that 
the other two peaks in the spectrum occur about E = fU/2 as they should. The 
non-zero value of b is essential for the Lorentzian p(  E), otherwise p( E), given by 
equation (3.13), does not tend to zero as E + &CO. For Hubbard models with finite 
bandwidth a non-zero b does not play a crucial role and at half filling Rrmi  liquid 
theory breaks down for U greater than a Critical value, as shown in I, whether b is 
zero or non-zero. The critical U depends on the value of b but taking b = 0 does 
not make any qualitative change. 

4. Diseussion 

An important class of model Hamiltonians with on-site electron interaction includes 
the Hubbard model, d-p model, periodic Anderson model and the Anderson impurity 
model. An exact diagrammatic analysis of the electron self-energy C of such models 
is given in section 2 within the local approximation. It is shown that C satisfies an 
equation involving a functional which is in general modeldependent. However, for 
dimension d = 00, where the local approximation is exact [3,4], the functional is 
universal and may be evaluated using an auxiliary impurity model. The latter scheme 
was recently developed by several authors [S-i‘l with starting-points different from 
the present one. In section 3 it is shown that the earlier approach of paper I of this 
series may be fitted into the new framework and can lead to sensible results for the 
test case of the Anderson impurity model. This lends more weight to results of I and 
further details of this work will be given in paper III of the series. The advantage 
of this approximate method is that C satisfies an explicit algebraic or transcendental 
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equation so that many resula can be obtained analytically, and it is essentially mnect 
in the weak-coupling and atomic limits for arbitrary electron density. The most 
striking result of I is that for paramagnetic solutions of the Hubbard model Fermi 
lipid behaviour breaks down in a whole region of the T = 0 phase diagram, not 
just on the insulating part of the line corresponding to a half-6lIed band as found 
by Brinkman and Rice [22]. It is of the highest interest to test this prediction using 
the new more rigorous methods which are exact for d = CO. Most work so far along 
these lines is resaicted to the half-filled band case [6,14-16]. The main problem is 
to solve the auxiliary impurity model and methods used so far have their limitations. 
Second-order perturbation theory [6] 6 unreliable away from half hlling, because it 
does not give the atomic Limit mrrectly, and with Monte Carlo methods [14-161 it is 
diflicdt to approach T = 0 where the interesting phase transition occu~s. Numerical 
renormalization group methods being developed in ow goup are promising. 
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